Posts

Showing posts from February, 2013

Dishing out cancer treatment

Selecting the right course of chemotherapy and kinase inhibitor is a daunting task. Although we now have decades of collective experience describing the average best course of action for a given tumor type, in too many cases in a given cancer patient, the selected drug regimen proves ineffective. In recent years, the search for biomarkers that can predict sensitivity or resistance to specific drugs has intensified, but so far, useful molecular signatures predictive of treatment outcomes for patients are few and far between. As a patient's cancer cells are usually readily available from biopsies or surgically resected tumors, shouldn't it be possible to test therapies on the cancer cells isolated from patients and identify the most effective drug and regimens? Clinicians and scientists have asked this question from the very beginning of the modern era of cancer medicine. Starting in the mid-1950s researchers began to develop methods to isolate and ...

This is what a fish thought looks like

Jan. 31, 2013 — For the first time, researchers have been able to see a thought "swim" through the brain of a living fish. The new technology is a useful tool for studies of perception. It might even find use in psychiatric drug discovery, according to authors of the study, appearing online on January 31 in Current Biology. "Our work is the first to show brain activities in real time in an intact animal during that animal's natural behavior," said Koichi Kawakami of Japan's National Institute of Genetics. "We can make the invisible visible; that's what is most important." The technical breakthrough included the development of a very sensitive fluorescent probe to detect neuronal activity. Kawakami, along with Junichi Nakai of Saitama University and their colleagues, also devised a genetic method for inserting that probe right into the neurons of interest. The two-part approach allowed the researchers to detect n...